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In this paper, a discriminant for judging the stability of differential dynamical systems is 

given. The discriminant is a rational expression in the coefficients of the original system. 

How to transform a differential dynamical system to the normal form is shown, which is 

the origin of the discriminant. This method is more simple and practical than the tradi- 

tional Lyapunov method. Examples are presented to show the applicability of the method- 

ology and the convenience of the discriminant. 
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1. Introduction 

System stability is a very important problem in the field of natural science and engineering technology. Any actual system

is always moving or working under a variety of occasional and ongoing disturbances. When the system is under disturbance,

whether the system can safely keep the motion track or working condition, that is, the stability of the system is the most

important consideration. The stability of a system includes the stability of the equilibrium state and the stability of any

motion. The stability of a given motion can be transformed into the stability of the equilibrium point. When we analyze

the stability of the equilibrium point, the stability of equilibrium point are defined as Lyapunov stability, uniform stability,

asymptotic stability, uniform asymptotic stability, exponential asymptotic stability and global asymptotic stability. The best

general references here are [1,2] . 

The study of nonlinear control systems has made some significant progress. For the further research, we review some

common methods for the stability analysis of nonlinear control systems first. The first one, linearization method, is used

to approximate the nonlinear system by using the linearized model. The linear methods include tangent approximation

method and least square method. The linearization approximation is only for weakly nonlinear systems. The second one,

phase plane method, is based on time domain analysis, and it is used to solve the first or the second order nonlinear or-

dinary differential equations. By graphic method, the motion of the first order and second order systems are transformed

into the phase trajectory of the position. The phase trajectory drawing method is simple and the calculation is small, and it

is especially suitable for the analysis of the nonlinear system. The third one, the description of the function method, makes

the nonlinear element approximate to a linear element, so that the stability of the system can be distinguished by using

the Nyquist stability criterion. This method is mainly used to study the stability and self oscillation of nonlinear systems.

For example, if the system produces self oscillation, then the method can be used to find out the frequency and amplitude
� Supported by the National Natural Science Foundation of China (11271363). 
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of the oscillation, and to find ways to eliminate the self oscillation. But it can not directly give reliable information about

the transient response. The fourth one, the Lyapunov first method, is a method for studying the stability of an approximate

mathematical model (linear model) of dynamic system. Its basic ideas include that: finding the balance state of the system;

linearizing the state equation near the equilibrium points (including different equilibrium points); finding the characteristic

values of the state equations with linearization; determining the stability of the system in the case of zero input. If the

characteristic value is 0, we need to use the center manifold theorem. The idea of the stability criterion of Lyapunov first

method is the same as the classical control theory. We need to solve the eigenvalues of the linearized state equations or

the linear state equations, and analyze the stability based on the eigenvalues in the complex plane. Because the Lyapunov

first method requires the eigenvalues of the system after linearization, so the method can only be applied to the nonlinear

constant system, linear constant system or weakly nonlinear problem, and can not be extended to time varying systems. The

fifth one, the Lyapunov second method, is proposed by considering the limitations of the Lyapunov first method. The Lya-

punov second method, also known as direct method, is applied for linear systems and nonlinear systems, constant systems

and time varying systems. It is established on the basis of the stability analysis from the viewpoint of energy. Based on this

view, if only we can find a positive energy function as a reasonable description of dynamic system of n-dimensional state,

then we can judge the stability of the equilibrium state of the system by investigating whether the function decays over

time. According to the characteristics of nonlinear system dynamic equations, we can find V ( x ) by the correlation method,

and determine the stability of nonlinear systems by the properties of V ( x ) and 

˙ V (x ) . The best general references here are

[1,3–5] . 

Recently, many researchers have paid attention to the development of the Lyapunov method [6–10] . In addition, the

method for studying the stability of a nonlinear system with the center manifold and normal forms theory appeared in

1985. The classical work can be seen in [11–15] . 

In this paper, we will consider the system which is characterized by the Jacobian matrix having a pair of purely imaginary

and other hyperbolic eigenvalues at the equilibrium 0. Hyperbolic eigenvalues are the eigenvalues which have non-zero real

parts. We propose a discriminant to judge the stability of a 3-dimensional analytic system. The discriminant is derived from

a kind of normal forms of the system. We also show how to transform a 3-dimensional analytic system to the normal form.

Then our results are generalized partially to n-dimensional system. Finally, examples are presented to show the applicability

of the technique. 

2. Stability analysis of 3-dimensional system 

In this section, we will give a theorem for the stability analysis of 3-dimensional system. Our main work is to prove the

theorem. The process described here can be implemented on a computer with Maple or Mathematica. First, we consider

such a system 

˙ x = f (x ) , x ∈ R 

n , (1) 

where f is analytic, and x = 0 is an equilibrium of system (1) , i.e. f (0) = 0 . System (1) is linearized to 

˙ x = Jx + F (x ) , x ∈ R 

n . (2) 

This function F and its first order derivative vanish at x = 0 . We can assume that J is Jordan canonical form (otherwise we

change J to Jordan canonical form by a linear transformation x = T y ). Here, J has a pair of purely imaginary eigenvalues ± i ω c 

at the equilibrium x = 0 . Without loss of generality, we assume ω c = 1 (otherwise one may use an additional transformation

t ′ = w c t) to change frequency ω c to 1), and the Jordan canonical form of the Jacobian matrix of system (2) at x = 0 is 

J = 

⎡ 

⎣ 

0 1 0 

−1 0 0 

0 0 A 

⎤ 

⎦ , A ∈ R 

(n −2) ×(n −2) , 

where A is hyperbolic. For most of the physical situations, we can assume the unstable manifold is empty (the eigenvalues

of A only have negative real part). 

In the 3-dimensional case, to begin with, we write Eq. (2) in the component form, 

˙ x 1 = x 2 + f 1 ( x 1 , x 2 , x 3 ) , 

˙ x 2 = −x 1 + f 2 ( x 1 , x 2 , x 3 ) , 

˙ x 3 = −α3 x 3 + f 3 ( x 1 , x 2 , x 3 ) , 

(3) 

where α3 > 0, and f i (0 , 0 , 0) = 0 , ∂ f i (0 , 0 , 0) /∂ x j = 0 , i, j = 1 , 2 , 3 . In order to give the theorem easily, we write further

(3) as follows, 

˙ x 1 = x 2 + p 1 x 1 
2 + p 2 x 2 

2 + p 3 x 1 x 2 + p 4 x 1 x 3 + p 5 x 2 x 3 + p 6 x 1 
3 + g 1 ( x 1 , x 2 , x 3 ) , 

˙ x 2 = −x 1 + q 1 x 1 
2 + q 2 x 2 

2 + q 3 x 1 x 2 + q 4 x 1 x 3 + q 5 x 2 x 3 + q 6 x 2 
3 + g 2 ( x 1 , x 2 , x 3 ) , 

˙ x 3 = −α3 x 3 + r 1 x 1 
2 + r 2 x 2 

2 + r 3 x 1 x 2 + g 3 ( x 1 , x 2 , x 3 ) , (4) 

where g 1 does not contain the terms like x 1 
2 , x 2 

2 , x 1 x 2 , x 1 x 3 , x 2 x 3 , x 1 
3 , g 2 does not contain the terms like x 1 

2 , x 2 
2 , x 1 x 2 ,

x x , x x , x 3 , and g does not contain the terms like x 2 , x 2 , x x . 
1 3 2 3 2 3 1 2 1 2 
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Theorem 1. For the system (4) , if �< 0, then the system will be unstable at the origin; if �> 0, then the system will be asymp-

totically stable at the origin, where 

� = ( p 3 − 2 q 1 ) p 1 + ( p 3 + 2 q 2 ) p 2 − ( q 1 + q 2 ) q 3 − 3( p 6 + q 6 ) + 

( p 5 + q 4 )(2 r 1 − 2 r 2 − α3 r 3 ) 

α3 
2 + 4 

+ 

(−p 4 + q 5 )( α3 r 1 − α3 r 2 + 2 r 3 ) 

α3 
2 + 4 

− 2( p 4 + q 5 )( r 1 + r 2 ) 

α3 

. 

Proof. We need to use the perturbation analysis method based on the method of multiple scales [16,17] , which is frequently

used for analyzing second-order nonlinear differential equations [18] , usually given in the form ẍ + x = ε f (x, ˙ x ) , where dot

indicates the differentiation with respect to time t , and ε is a small parameter (0 < ε �1), f is a nonlinear analytic function

and thus can be expressed in a Taylor series.Then we begin with introducing new independent variables according to 

T k = ε k t, k = 0 , 1 , 2 , . . . 

and 

d 

dt 
= 

d T 0 
dt 

∂ 

∂ T 0 
+ 

d T 1 
dt 

∂ 

∂ T 1 
+ 

d T 2 
dt 

∂ 

∂ T 2 
+ · · · = D 0 + ε D 1 + ε 2 D 2 + · · ·, (5)

where the differential operator D k = ∂ /∂ T k . 
Then, we suppose that the solution of (3) in the neighborhood of x = 0 is represented by an expansion of the form 

x i (t; ε) = ε x i 1 ( T 0 , T 1 , . . . ) + ε 2 x i 2 ( T 0 , T 1 , . . . ) + · · ·, i = 1 , 2 , 3 . (6)

Note that the perturbation parameter ε used in (6) is the same as that used in the time scales T k = ε k t, k = 0 , 1 , 2 , . . . . 

Next, we substitute (5), (6) into (3) , and balance the like powers of ε results in the ordered perturbation equations 

ε 1 : D 0 x 11 = x 21 , D 0 x 21 = −x 11 , D 0 x 31 = −α3 x 31 , (7)

ε 2 : D 0 x 12 = x 22 − D 1 x 11 + f 12 ( x 11 , x 21 , x 31 ) , 

D 0 x 22 = −x 12 − D 1 x 21 + f 22 ( x 11 , x 21 , x 31 ) , 

D 0 x 32 = −α3 x 32 + f 32 ( x 11 , x 21 , x 31 ) , 

(8)

where f i 2 = ( d 2 /d ε 2 ) [ f i ( x 1 , x 2 , x 3 )] ε=0 . f i 2 is the function of x i 1 (i = 1 , 2 , 3) which has been solved from (7) . In general, func-

tion f ik only involves variables which have been solved from the previous (k-1) steps perturbation equations. To solve the

ε1 order Eq. (7) , these equations will be divided into two groups, one of which consists of the first two equations, and the

other one includes the remaining equations. 

From the first group, we find that 

D 

2 
0 x 11 + x 11 = 0 , x 11 = r( T 1 , T 2 , . . . ) cos [ T 0 + ϕ( T 1 , T 2 , . . . )] = r cos θ, 

x 21 = D 0 x 11 = −r( T 1 , T 2 , . . . ) sin [ T 0 + ϕ( T 1 , T 2 , . . . )] = −r sin θ . 

Because we only care about the asymptotic behavior of the system, the solutions of the second group are contributed from

the first two variables x 1 and x 2 only. The asymptotic ε1 solutions of the second group are given by x 31 = 0 . Substituting

x 11 , x 21 , x 31 into (8) , thus we can solve Eq. (8) . From the first two equations of (8) , we get an equation 

D 0 
2 x 12 + x 12 = −D 1 D 0 x 11 − D 1 x 21 + D 0 f 12 + f 22 . (9)

Substituting x 11 , x 21 , x 31 into the right side of Eq. (9) gives an expression in terms of trigonometric functions cos k θ and

sin kθ, k = 0 , 1 , 2 . To eliminate possible secular terms which may appear in x 12 , it is required that the coefficients of the

two terms cos k θ and sin k θ equal zero, which in turn yields the explicit expression for D 1 r , D 1 ϕ and x 12 , x 22 . Follow this

way, we also get x 1 i , x 2 i , x 3 i , D i −1 r, D i −1 ϕ (i > 1) from the εi order perturbation equations. 

This method can be used to solve any higher order perturbation equations of (3) , finally, it is the result that 

x 1 = r cos θ + h 1 (r cos θ, −r sin θ ) , 

x 2 = −r sin θ + h 2 (r cos θ, −r sin θ ) , 

x 3 = h 3 (r cos θ, −r sin θ ) , (10)

and we also find that 

˙ r = 

∂r 

∂ T 0 

∂ T 0 
∂t 

+ 

∂r 

∂ T 1 

∂ T 1 
∂t 

+ 

∂r 

∂ T 2 

∂ T 2 
∂t 

+ · · · = D 0 r + ε D 1 r + ε 2 D 2 r + · · ·, 

˙ θ = 1 + 

∂ϕ 

∂ T 0 

∂ T 0 
∂t 

+ 

∂ϕ 

∂ T 1 

∂ T 1 
∂t 

+ · · · = 1 + D 0 ϕ + ε D 1 ϕ + · · ·. 

We use a back scaling εr → r , and find that 

˙ r = a 13 r 
3 + a 15 r 

5 + · · · + a 1(2 n +1) r 
2 n +1 + · · ·, 

˙ θ = 1 + a 23 r 
2 + a 25 r 

4 + · · · + a 2(2 n +1) r 
2 n + · · ·. (11)
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One has got the simplest normal form of (11) in [11] , in this article we just discuss one case that (11) can be reduced to the

following form, {
˙ ρ = a 13 ρ

3 + a 15 ρ
5 , 

˙ ϕ = 1 + a 23 ρ
2 , 

i f a 13 � = 0 . (12) 

Note that a 13 in (11) is the same as that in (12) . The next work is to prove that (3) can be reduced to (11) by the center

manifold theory. If the transformation 

y 1 = r cos θ, y 2 = −r sin θ

is introduced into (10) , one can rewrite Eq. (10) as follows, 

x 1 = y 1 + h 1 ( y 1 , y 2 ) , 

x 2 = y 2 + h 2 ( y 1 , y 2 ) , 

x 3 = h 3 ( y 1 , y 2 ) . (13) 

Let us give the following near-identity transformation to (3) : 

x 1 = y 1 + h 1 ( y 1 , y 2 ) , 

x 2 = y 2 + h 2 ( y 1 , y 2 ) , 

x 3 = y 3 , (14) 

then we have 

⎛ 

⎝ 

˙ x 1 

˙ x 2 

˙ x 3 

⎞ 

⎠ = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 + 

∂ h 1 

∂ y 1 

∂ h 1 

∂ y 2 
0 

∂ h 2 

∂ y 1 
1 + 

∂ h 2 

∂ y 2 
0 

0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎛ 

⎝ 

˙ y 1 

˙ y 2 

˙ y 3 

⎞ 

⎠ , 

and 

⎛ 

⎝ 

˙ y 1 

˙ y 2 

˙ y 3 

⎞ 

⎠ = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 + 

∂ h 1 

∂ y 1 

∂ h 1 

∂ y 2 
0 

∂ h 2 

∂ y 1 
1 + 

∂ h 2 

∂ y 2 
0 

0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

−1 ⎛ 

⎝ 

˙ x 1 

˙ x 2 

˙ x 3 

⎞ 

⎠ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 + 

∂ h 1 

∂ y 1 

∂ h 1 

∂ y 2 
0 

∂ h 2 

∂ y 1 
1 + 

∂ h 2 

∂ y 2 
0 

0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

−1 ⎛ 

⎝ 

x 2 + f 1 ( x 1 , x 2 , x 3 ) 

−x 1 + f 2 ( x 1 , x 2 , x 3 ) 

−α3 x 3 + f 3 ( x 1 , x 2 , x 3 ) 

⎞ 

⎠ . (15) 

We can obtain the system which has the same stability properties as (3) at the origin by substituting (14) into (15) , as

follows, 

˙ y 1 = y 2 + e 1 ( y 1 , y 2 , y 3 ) , 

˙ y 2 = −y 1 + e 2 ( y 1 , y 2 , y 3 ) , 

˙ y 3 = e 3 ( y 1 , y 2 , y 3 ) . (16) 

Comparing (13) and (14) , we get y 3 = h 3 ( y 1 , y 2 ) . And y 3 = h 3 ( y 1 , y 2 ) is the center manifold of system (16) , because of the

related theory of center manifold in [19] . Substituting y 3 = h 3 ( y 1 , y 2 ) into the first two equations of (16) , we can get the

reduced system as follows, 

˙ y 1 = y 2 + a 13 ( y 1 
2 + y 2 

2 ) y 1 + · · · + a 1(2 n +1) ( y 1 
2 + y 2 

2 ) n y 1 + · · · + a 23 ( y 1 
2 + y 2 

2 ) y 2 + · · ·
+ a 2(2 n +1) ( y 1 

2 + y 2 
2 ) n y 2 + · · ·

˙ y 2 = −y 1 + a 13 ( y 1 
2 + y 2 

2 ) y 2 + · · · + a 1(2 n +1) ( y 1 
2 + y 2 

2 ) n y 2 + · · · − a 23 ( y 1 
2 + y 2 

2 ) y 1 − · · ·
− a 2(2 n +1) ( y 1 

2 + y 2 
2 ) n y 1 − · · ·. (17) 

And the reduced system is obtained in [20,21] too. The system (17) given in polar coordinates can be written as (11) . The

best general references here are [20,21] . Thus, according to the center manifold theory, (11) and (3) have the same stability

properties at the origin. As we know, in (11) , if a > 0, the system is unstable, if a < 0, the system is asymptotically stable.
13 13 
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Thus the next work is to solve a 13 . According to the calculations above, we get a 13 r 
3 = D 2 r. Then the next work is to solve

D 2 r , and we notice that D 2 r appears in ε3 order perturbation equations, 

ε 3 : D 0 x 13 + D 1 x 12 + D 2 x 11 = x 23 + f 13 , 

D 0 x 23 + D 1 x 22 + D 2 x 21 = −x 13 + f 23 , 

D 0 x 33 + D 1 x 32 = −α3 x 33 + f 33 . (18)

Note that, f i 3 = ( d 3 /d ε 3 ) [ f i ( x 1 , x 2 , x 3 )] ε=0 , i = 1 , 2 , 3 . Substituting (6) into (3) , we can know that f i 3 is in terms of

x 11 
3 , x 21 

3 , x 11 x i 2 , x 21 x j2 , (i, j = 1 , 2 , 3) . Next,we will solve x 12 , x 22 , x 32 . Comparing (3) and (4) ,we find that 

f 1 ( x 1 , x 2 , x 3 ) = p 1 x 1 
2 + p 2 x 2 

2 + p 3 x 1 x 2 + p 4 x 1 x 3 + p 5 x 2 x 3 + p 6 x 1 
3 + g 1 ( x 1 , x 2 , x 3 ) , 

f 2 ( x 1 , x 2 , x 3 ) = q 1 x 1 
2 + q 2 x 2 

2 + q 3 x 1 x 2 + q 4 x 1 x 3 + q 5 x 2 x 3 + q 6 x 2 
3 + g 2 ( x 1 , x 2 , x 3 ) , 

f 3 ( x 1 , x 2 , x 3 ) = r 1 x 1 
2 + r 2 x 2 

2 + r 3 x 1 x 2 + g 3 ( x 1 , x 2 , x 3 ) . (19)

In (9) , D 0 
2 x 12 + x 12 = −D 1 D 0 x 11 − D 1 x 21 + D 0 f 12 + f 22 , by calculations, we find D 1 r = D 1 ϕ = 0 , which yields that 

D 0 
2 x 12 + x 12 = D 0 f 12 + f 22 . (20)

According to previous definitions, f 12 , f 22 , f 32 are in terms of x 11 
2 , x 21 

2 , x 11 x 21 , then we learn from (6) and (19) that 

f 12 ( x 11 , x 21 , x 31 ) = p 1 x 11 
2 + p 2 x 21 

2 + p 3 x 11 x 21 , 

f 22 ( x 11 , x 21 , x 31 ) = q 1 x 11 
2 + q 2 x 21 

2 + q 3 x 11 x 21 , 

f 32 ( x 11 , x 21 , x 31 ) = r 1 x 11 
2 + r 2 x 21 

2 + r 3 x 11 x 21 . (21)

Substituting the first two equations of (21) and x 11 , x 21 into (20) , we find that 

D 

2 
0 x 12 + x 12 = D 0 f 12 + f 22 = D 0 ( p 1 x 11 

2 + p 2 x 21 
2 + p 3 x 11 x 21 ) + q 1 x 11 

2 + q 2 x 21 
2 + q 3 x 11 x 21 , 

D 0 
2 x 12 + x 12 = 

(
p 2 − p 1 − q 3 

2 

)
r 2 sin 2 θ + 

(
q 1 
2 

− q 2 
2 

− p 3 

)
r 2 cos 2 θ + 

(
q 1 
2 

+ 

q 2 
2 

)
r 2 . (22)

Because the maximum degree in the right of (22) is two , we can assume that 

x 12 = A 0 + A 1 cos θ + B 1 sin θ + A 2 cos 2 θ + B 2 sin 2 θ . (23)

Substituting (23) into (22) , and using the harmonic balance method [22] , the corresponding terms of both sides are balanced,

we find that 

x 12 = A 10 r 
2 + A 11 r 

2 cos 2 θ + A 12 r 
2 sin 2 θ

= 

q 1 + q 2 
2 

r 2 + 

q 2 + 2 p 3 − q 1 
6 

r 2 cos θ + 

q 3 + 2 p 1 − 2 p 2 
6 

r 2 sin 2 θ . 

From the first equation of (8) , we find 

x 22 = D 0 x 12 + D 1 x 11 − f 12 = A 20 r 
2 + A 21 r 

2 cos 2 θ + A 22 r 
2 sin 2 θ

= − p 1 + p 2 
2 

r 2 + 

p 1 − p 2 + 2 q 3 
6 

r 2 cos 2 θ + 

2 q 1 − 2 q 2 − p 3 
6 

r 2 sin 2 θ . 

From the third equation in (8) , we get 

D 0 x 32 + α3 x 32 = f 32 ( x 11 , x 21 , x 31 ) . (24)

Substituting x 32 = A 0 + A 1 cos θ + B 1 sin θ + A 2 cos 2 θ + B 2 sin 2 θ and f 32 into (24) , we can find 

x 32 = A 30 r 
2 + A 31 r 

2 cos 2 θ + A 32 r 
2 sin 2 θ

= 

r 1 + r 2 
2 α3 

r 2 + 

α3 r 1 − α3 r 2 + 2 r 3 
2( α3 

2 + 4) 
r 2 cos 2 θ + 

2 r 1 − 2 r 2 − α3 r 3 
2( α3 

2 + 4) 
r 2 sin 2 θ . 

Because D 1 r = D 1 ϕ = 0 , we can get the following equations from the first two equations of (18) , 

D 

2 
0 x 13 + x 13 = −D 0 D 1 x 12 − D 0 D 2 x 11 − D 1 x 22 − D 2 x 21 + f 23 + D 0 f 13 , 

D 0 
2 x 13 + x 13 = 2( D 2 r · sin θ + r D 2 ϕ · cos θ ) + f 23 + D 0 f 13 . (25)

To eliminate the possible secular terms which may appear in x 13 , it is required that the coefficients of the two terms cos θ
and sin θ equal 0 in (25) , and we can see that D 2 r only appears as the coefficient of sin θ , thus we only need to search

the terms about sin θ in f 23 and D 0 f 13 , which are the terms about sin θ in f 23 and cos θ in f 13 . Because f i 3 is in terms of

x 11 
3 , x 21 

3 , x 11 x i 2 , x 21 x j2 , (i, j = 1 , 2 , 3) , in (19) , we can assume 

f 13 = 2 p 1 x 11 x 12 + p 3 x 11 x 22 + p 4 x 11 x 32 + p 3 x 21 x 12 + 2 p 2 x 21 x 22 + p 5 x 21 x 32 + p 6 x 11 
3 + f 131 , 

f 23 = 2 q 1 x 11 x 12 + q 3 x 11 x 22 + q 4 x 11 x 32 + q 3 x 21 x 12 + 2 q 2 x 21 x 22 + q 5 x 21 x 32 + q 6 x 21 
3 + f 231 , (26)
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where f 131 = c 1 x 21 
3 , f 231 = c 2 x 11 

3 , c 1 , c 2 is constant. Substituting (26) and x 12 , x 22 , x 32 into (25) , it results that 

a 13 r 
3 = D 2 r 

= −1 

2 

r 3 
[ 
(−2 p 1 − q 3 ) A 10 + 

(
1 

2 

q 3 − p 1 

)
A 11 − ( p 3 + 2 q 2 ) A 20 + 

(
−1 

2 

p 3 + q 2 

)
A 21 − ( p 4 + q 5 ) A 30 

+ 

1 

2 

( q 5 − p 4 ) A 31 + 

(
1 

2 

p 3 + q 1 

)
A 12 + 

(
p 2 + 

1 

2 

q 3 

)
A 22 + 

(
1 

2 

p 5 + 

1 

2 

q 4 

)
A 32 − 3 

4 

p 6 − 3 

4 

q 6 

] 
. 

Substituting A i 0 , A i 1 , A i 2 (i = 1 , 2 , 3) into the above equation, we find 

a 13 = −1 

8 

[
( p 3 − 2 q 1 ) p 1 + ( p 3 + 2 q 2 ) p 2 − ( q 1 + q 2 ) q 3 − 3( p 6 + q 6 ) + 

( p 5 + q 4 )(2 r 1 − 2 r 2 − α3 r 3 ) 

α3 
2 + 4 

+ 

(−p 4 + q 5 )( α3 r 1 − α3 r 2 + 2 r 3 ) 

α3 
2 + 4 

− 2( p 4 + q 5 )( r 1 + r 2 ) 

α3 

]
. 

Then, � = −8 a 13 , thus the theorem is obtained. �

3. Stability analysis of n-dimensional system 

In this section, we mainly give three theorems to solve the center manifold of system (2) which is n-dimensional system,

and solve the normal forms of the reduced system which is obtained by the center manifold theory. Then we give a dis-

criminant which is solved by the coefficients of the system to judge the stability of the n-dimensional system by the normal

forms. According to the previous discussion, in the system (2) , 

˙ x = Jx + F (x ) , x ∈ R 

n , 

where F and its first derivative vanish at x = 0 , and 

J = 

⎡ 

⎣ 

0 1 0 

−1 0 0 

0 0 A 

⎤ 

⎦ , A ∈ R 

(n −2) ×(n −2) , 

the eigenvalues of A are hyperbolic, and their real parts are negative. Thus, we assume that 

A = 

⎡ 

⎢ ⎢ ⎣ 

B 

C 

D 

E 

⎤ 

⎥ ⎥ ⎦ 

, 

B = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−α1 1 

−α1 1 

· ·
· ·

· 1 

−α1 

−α1 

·
·

−α1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

( k 2 ×k 2 ) 

, 

C = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−α2 

−α3 

·
·

−αk 3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 
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D = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−α ω 1 

−ω −α 1 

−α ω 1 

−ω −α 1 

· ·
· 1 

−α ω 

−ω −α

−α ω 

−ω −α

·
·

−α ω 

−ω −α

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

( k 5 −k 3 ) ×( k 5 −k 3 ) 

, 

E = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−αk 5 +1 ω k 5 +1 

−ω k 5 +1 −αk 5 +1 

−αk 5 +2 ω k 5 +2 

−ω k 5 +2 −αk 5 +2 

·
·

−αn −1 ω n −1 

−ω n −1 −αn −1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

Note that C has no multiple real eigenvalues, and E has no multiple complex eigenvalues. B has multiple real eigenval-

ues, the multiplicity of 1 in B is k 1 . D has multiple complex eigenvalues, the multiplicity of 1 in D is k 4 − k 3 . Here, the

multiplicity of 1 can be obtained with the knowledge of the Jordan canonical form. Then, we write the system (2) in the

component form 

˙ x 1 = x 2 + f 1 ( x 1 , x 2 , . . . , x n ) , 

˙ x 2 = −x 1 + f 2 ( x 1 , x 2 , . . . , x n ) , 

˙ x a = −α1 x a + x a +1 + f a ( x 1 , x 2 , . . . , x n ) , (a = 3 , 4 , . . . , k 1 + 2) , 

˙ x b = −α1 x b + f b ( x 1 , x 2 , . . . , x n ) , (b = k 1 + 3 , . . . , k 2 + 2) , 

˙ x p = −αp x p + f p ( x 1 , x 2 , . . . , x n ) , (p = k 2 + 3 , . . . , k 3 ) , 

˙ x c = −αx c + ω x c+1 + x c+2 + f c ( x 1 , x 2 , . . . , x n ) , 

˙ x c+1 = −ω x c − αx c+1 + x c+3 + f c+1 ( x 1 , x 2 , . . . , x n ) , (c = k 3 + 1 , k 3 + 3 , . . . , k 4 − 1) , 

˙ x d = −αx d + ω x d+1 + f d ( x 1 , x 2 , . . . , x n ) , 

˙ x d+1 = −ω x d − αx d+1 + f d+1 ( x 1 , x 2 , . . . , x n ) , (d = k 4 + 1 , k 4 + 3 , . . . , k 5 − 1) , 

˙ x q = −αq x q + ω q x q +1 + f q ( x 1 , x 2 , . . . , x n ) , 

˙ x q +1 = −ω q x q − αq x q +1 + f q +1 ( x 1 , x 2 , . . . , x n ) , (q = k 5 + 1 , k 5 + 3 , . . . , n − 1) , (27)

where α1 > 0, αp > 0, α > 0, αq > 0, ω > 0, ω q > 0. 

And we assume that f i = s i 1 x 1 
2 + s i 2 x 2 

2 + f i 0 , i = 1 , 2 , . . . , n . f i 0 does not contain the terms like x 1 
2 and x 2 

2 . We take the

approach used in studying the 3-dimensional systems, namely the perturbation analysis and multiple scale method, to study

the n-dimensional system. Here, we only write ε1 and ε2 order equations. 

ε 1 : 

D 0 x 11 = x 21 , 

D 0 x 21 = −x 11 , 

D 0 x a 1 = −α1 x a 1 + x (a +1)1 , (a = 3 , 4 , . . . , k 1 + 2) , 

D 0 x b1 = −α1 x b1 , (b = k 1 + 3 , . . . , k 2 + 2) , 

D 0 x p1 = −αp x p1 , (p = k 2 + 3 , . . . , k 3 ) , 

D 0 x c1 = −αx c1 + ω x (c+1)1 + x (c+2)1 , 
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D 0 x (c+1)1 = −ω x c1 − αx (c+1)1 + x (c+3)1 , (c = k 3 + 1 , k 3 + 3 , . . . , k 4 − 1) , 

D 0 x d1 = −αx d1 + ω x (d+1)1 , 

D 0 x (d+1)1 = −ω x d1 − αx (d+1)1 , (d = k 4 + 1 , k 4 + 3 , . . . , k 5 − 1) , 

D 0 x q 1 = −αq x q 1 + ω q x (q +1)1 , 

D 0 x (q +1)1 = −ω q x q 1 − αq x (q +1)1 , (q = k 5 + 1 , k 5 + 3 , . . . , n − 1) , (28) 

ε 2 : 

D 0 x 12 + D 1 x 11 = x 22 + f 12 ( x 11 , x 21 , . . . , x n 1 ) , 

D 0 x 22 + D 1 x 21 = −x 12 + f 22 ( x 11 , x 21 , . . . , x n 1 ) , 

D 0 x a 2 = −α1 x a 2 + x (a +1)2 + f a 2 ( x 11 , x 21 , . . . , x n 1 ) , (a = 3 , 4 , . . . , k 1 + 2) , 

D 0 x b2 = −α1 x b2 + f b2 ( x 11 , x 21 , . . . , x n 1 ) , (b = k 1 + 3 , . . . , k 2 + 2) , 

D 0 x p2 = −αp x p2 + f p2 ( x 11 , x 21 , . . . , x n 1 ) , (p = k 2 + 3 , . . . , k 3 ) , 

D 0 x c2 = −αx c2 + ω x (c+1)2 + x (c+2)2 + f c2 ( x 11 , x 21 , . . . , x n 1 ) , 

D 0 x (c+1)2 = −ω x c2 − αx (c+1)2 + x (c+3)2 + f (c+1)2 ( x 11 , x 21 , . . . , x n 1 ) , (c = k 3 + 1 , k 3 + 3 , . . . , k 4 − 1) , 

D 0 x d2 = −αx d2 + ω x (d+1)2 + f d2 ( x 11 , x 21 , . . . , x n 1 ) , 

D 0 x (d+1)2 = −ω x d2 − αx (d+1)2 + f (d+1)2 ( x 11 , x 21 , . . . , x n 1 ) , (d = k 4 + 1 , k 4 + 3 , . . . , k 5 − 1) , 

D 0 x q 2 = −αq x q 2 + ω q x (q +1)2 + f q 2 ( x 11 , x 21 , . . . , x n 1 ) , 

D 0 x (q +1)2 = −ω q x q 2 − αq x (q +1)2 + f (q +1)2 ( x 11 , x 21 , . . . , x n 1 ) , (q = k 5 + 1 , k 5 + 3 , . . . , n − 1) . (29) 

The equations of (28) can be divided into two groups, one of which consists of the first two equations, and the other one

includes the remaining equations. According to the first group, we obtain 

D 

2 
0 x 11 + x 11 = 0 , x 11 = r( T 1 , T 2 , . . . ) cos [ T 0 + ϕ( T 1 , T 2 , . . . )] = r cos θ, 

x 21 = D 0 x 11 = −r( T 1 , T 2 , . . . ) sin [ T 0 + ϕ( T 1 , T 2 , . . . )] = −r sin θ . 

The ε1 order solutions of the second group are given by x i 1 = 0 , i = 3 , 4 , . . . , n . We substitute x i 1 = 0 (i = 3 , 4 , . . . , n )

into (29) . Then (29) is divided into four groups. The first and second equations are the first group. In this group, we can

get D 0 
2 x 12 + x 12 = −D 1 D 0 x 11 − D 1 x 21 + D 0 f 12 + f 22 . To eliminate possible secular terms which may appear in x 12 , we find

D 1 r = D 1 ϕ = 0 . The third, fourth and fifth equations are the second group, and after we solve the fourth and fifth equations

of (29) , we can solve the third one. The sixth, seventh, eighth, and ninth equations are the third group, and after we solve

the eighth and ninth equations of (29) , we can solve the sixth and seventh equations. The tenth and eleventh equations are

the fourth group, we can solve the group directly. In the discussion above, we solve the equations by the harmonic balance

method. Finally, x i 2 (i = 1 , 2 , . . . , n ) can be obtained. This method is also applicable to higher order perturbation equations.

Then, by the maple program in the computer, in the finite step, one gets D i r = c 1 r 
i +1 , D i ϕ = c 2 r 

i , if i is even, where c 1 , c 2 
are constants; D i r = D i θ = 0 , if is odd. The maple program mentioned above is available in [12] . 

Lemma 1. In the expansion of x i , x i j = r j [ C 0 + 

∑ j 

k =1 
( C 1 k cos kθ + C 2 k sin kθ )] , C 0 , C 1 k , C 2 k are constants. If j is even, then C 1 k =

C 2 k = 0 , in which k is odd, if j is odd, then C 0 = C 1 k = C 2 k = 0 , in which k is even. 

Proof. This lemma is proved by induction. Note that the terms like C 1 k cos k θ , C 2 k sin k θ are called odd term, if k is odd; the

terms like C 1 k cos k θ , C 2 k sin k θ are called even term, if k is even. First, the method introduced above is used to solve 

x 11 = r cos θ, x 21 = −r sin θ, x 31 = x 41 = · · · = x n 1 = 0 , 

x l2 = r 2 ( C 0 + C 12 cos 2 θ + C 22 sin 2 θ ) , l = 1 , 2 , . . . , n. (30) 

Obviously, x l 1 , x l 2 are satisfying Lemma 1 , and we assume that the lemma is right when j = m − 1 . We can write εm order

perturbation equations, and the first two equations of them is written, as follows, 

D m −1 x 11 + D m −2 x 12 + · · · + D 0 x 1 m 

= x 2 m 

+ f 1 m 

, 

D m −1 x 21 + D m −2 x 22 + · · · + D 0 x 1 m 

= −x 1 m 

+ f 2 m 

. (31) 
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From (31) , we find that 

D 

2 
0 x 1 m 

+ x 1 m 

= −D 0 D m −1 x 11 − D 0 D m −2 x 12 − · · · − D 0 D 1 x 1(m −1) − D m −1 x 21 − D m −2 x 22 · · · −D 1 x 2(m −1) + f 2 m 

+ D 0 f 1 m 

. 

(32)

If m is odd, according to the results we have got, the terms which contain D i ( i is odd) in the right of (32) equal 0. Thus

(32) is written as 

D 

2 
0 x 1 m 

+ x 1 m 

= −D 0 D m −1 x 11 − D 0 D m −3 x 13 − · · · − D 0 D 2 x 1(m −2) − D m −1 x 21 − D m −3 x 23 · · · −D 2 x 2(m −2) + f 2 m 

+ D 0 f 1 m 

. 

(33)

We assume that 

x 1 m 

= A 0 + A 1 cos θ + B 1 sin θ + · · · + A m 

cos mθ + B m 

sin mθ . (34)

On the right side of (33) , according to the induction hypothesis, and because D i r = const. r i +1 , D i ϕ = const. r i , if i is even; D i r =
D i θ = 0 , if i is odd, we find every term is like the form of r m [ C 0 + 

∑ m 

k =1 ( C 1 k cos kθ + C 2 k sin kθ )] , C 0 , C 1 k , C 2 k are constants. 

Because f im 

= ( d m /d ε m ) [ f i ( x 1 , x 2 , . . . , x n )] ε=0 ( i = 1 , 2 , . . . , n ) , and m is odd, by induction hypothesis, thus the last two

terms f 2 m 

, D 0 f 1 m 

only contain odd term, the remaining terms contain odd term obviously. Thus the right side of (33) only

contains odd term. Then, substituting (34) into (33) , and balancing the corresponding coefficients of both sides, we get 

x 1 m 

= r m [ A 11 cos θ + B 11 sin θ + A 31 cos 3 θ + B 31 sin 3 θ + · · · + A m 1 cos mθ + B m 1 sin mθ ] . (35)

Substituting (35) into the first equation of (31) , we get 

x 2 m 

= r m [ A 12 cos θ + B 12 sin θ + A 32 cos 3 θ + B 32 sin 3 θ + · · · + A m 2 cos mθ + B m 2 sin mθ ] . (36)

Note that A i 1 , A i 2 , B i 1 , B i 2 (i = 1 , 2 , . . . , m ) in (35) and (36) are constants. Similarly, according to the conditions of the induc-

tion hypothesis, from the rest equations of εm order perturbation equations, we find that if m is odd, then 

x im 

= r m [ A 1 i cos θ + B 1 i sin θ + A 3 i cos 3 θ + B 3 i sin 3 θ + · · · + A mi cos mθ + B mi sin mθ ] , i = 1 , 2 , . . . , n ; (37)

if m is even, then 

x im 

= r m [ A 0 i + A 2 i cos 2 θ + B 2 i sin 2 θ + A 4 i cos 4 θ + B 4 i sin 4 θ + · · · + A mi cos mθ + B mi sin mθ ] , i = 1 , 2 , . . . , n, (38)

where A ji , B hi ( j = 0 , 1 , 2 , . . . , m, h = 1 , 2 , . . . , m, i = 1 , 2 , . . . , n ) in (37) and (38) are constants. 

Thus, the Lemma 1 is obtained. In the previous section, we have obtained that 

D i r = c 1 r 
i +1 , D i ϕ = c 2 r 

i , where c 1 , c 2 are constants, as i is even; 

D i r = D i θ = 0 , as i is odd, where i is finite. 

Next,we will show that if we keep computation, we will prove that the result is the same. �

Lemma 2. In the system (27) , if i is even, then D i r = c 1 r 
i +1 , D i ϕ = c 2 r 

i , where c 1 , c 2 are constants; if i is odd, then D i r = D i θ =
0 , i = 1 , 2 , . . . . 

Proof. According to the method introduced above, to eliminate the possible secular term in x 1 m 

, we get D i r, D i ϕ. Thus we

can study the problem in (32) , as follows, 

D 

2 
0 x 1 m 

+ x 1 m 

= −D 0 D m −1 x 11 − D 0 D m −2 x 12 − · · · − D 0 D 1 x 1(m −1) − D m −1 x 21 − D m −2 x 22 · · · −D 1 x 2(m −1) + f 2 m 

+ D 0 f 1 m 

, 

where m = 1 , 2 , 3 , . . . . 

From the above equation, we can see that only terms (−D 0 D m −1 x 11 − D m −1 x 21 ) contains D m −1 . Then we use the induction

method to solve this problem. According to the previous algorithm, we get D 1 r = D 1 ϕ = 0 , D 2 r = a 13 r 
3 , D 2 ϕ = a 23 r 

2 , which

satisfy Lemma 2 obviously. We assume the conclusion is right when i ≤ m − 2 , and because 

−D 0 D m −1 x 11 − D m −1 x 21 = −2 D m −1 x 21 

= 2 D m −1 r · sin θ + 2 r D m −1 ϕ · cos θ . (39)

From (39) , we know that D m −1 r only appears as the coefficient of sin θ , and D m −1 ϕ only appears as the coefficient of cos θ .

Thus, in the process of eliminating the secular term and solving D m −1 r, we only consider the terms about sin θ . 

When m is odd, (32) can be written as 

D 

2 
0 x 1 m 

+ x 1 m 

= (−D 0 D m −1 x 11 −D m −1 x 21 ) − D 0 D m −3 x 13 − · · · − D 0 D 2 x 1(m −2) − D m −3 x 23 · · · −D 2 x 2(m −2) + f 2 m 

+ D 0 f 1 m 

, 

(40)

then, according to Lemma 1 , we know that the right of (40) can be written as 

(2 D m −1 r · sin θ + 2 r D m −1 ϕ · cos θ ) + r m [ A 1 cos θ + B 1 sin θ + A 3 cos 3 θ + B 3 sin 3 θ + · · · + A m 

cos mθ + B m 

sin mθ ] , 

where A 1 , A 3 , . . . , A m 

, B 1 , B 3 , . . . , B m 

are constants. To eliminate the secular term that may appear in x 1 m 

, we get that D m −1 r =
const. r m , D m −1 ϕ = const. r m −1 . 
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When m is even, we also consider 

D 

2 
0 x 1 m 

+ x 1 m 

= −D 0 D m −1 x 11 − D 0 D m −2 x 12 − · · · − D 0 D 1 x 1(m −1) − D m −1 x 21 − D m −2 x 22 · · · −D 1 x 2(m −1) + f 2 m 

+ D 0 f 1 m 

, 

then it can be written as, 

D 

2 
0 x 1 m 

+ x 1 m 

= (−D 0 D m −1 x 11 − D m −1 x 21 ) − D 0 D m −2 x 12 − · · · − D 0 D 2 x 1(m −2) − D m −2 x 22 · · · −D 2 x 2(m −2) + f 2 m 

+ D 0 f 1 m 

. 

(41) 

According to Lemma 1 , we find that the right of (41) can be written as 

(2 D m −1 r · sin θ + 2 r D m −1 ϕ · cos θ ) + r m [ A 0 + A 2 cos 2 θ + B 2 sin 2 θ + A 4 cos 4 θ + B 4 sin 4 θ + · · ·
+ A m 

cos mθ + B m 

sin mθ ] . 

To eliminate the secular term that may appear in x 1 m 

, we get that D m −1 r = D m −1 ϕ = 0 . 

Thus Lemma 2 is obtained. 

Next, we give a back scaling εr → r or simply setting ε = 1 , then we get 

x 1 = r cos θ + h 1 (r cos θ, −r sin θ ) , 

x 2 = −r sin θ + h 2 (r cos θ, −r sin θ ) , 

x i = h i (r cos θ, −r sin θ ) , i = 3 , 4 , . . . , n. (42) 

In polar coordinates, we find that 

˙ r = D 2 r + D 4 r + D 6 r + . . . + D 2 n r + . . . 

= a 13 r 
3 + a 15 r 

5 + a 17 r 
7 + . . . + a 1(2 n +1) r 

2 n +1 + . . . , 

˙ θ = 1 + D 2 ϕ + D 4 ϕ + D 6 ϕ + . . . + D 2 n ϕ + . . . 

= 1 + a 23 r 
2 + a 25 r 

4 + a 27 r 
6 + . . . + a 2(2 n +1) r 

2 n + . . . . (43) 

Similar to the study of 3-dimensional systems, one has gotten the simplest normal form of (43) in [20] , and we just discuss

the case that (43) can be reduced to the following form, {
˙ ρ = a 13 ρ3 + a 15 ρ5 , 

˙ ϕ = 1 + a 23 ρ
2 , 

i f a 13 � = 0 ; (44) 

Note that a 13 of (43) is as same as a 13 in (44) . The next work is to prove that (27) can be reduced by the center manifold

theory to (44) . If the transformation y 1 = r cos θ, y 2 = −r sin θ is introduced into (42) , we can rewrite Eq. (42) as follows, 

x 1 = y 1 + h 1 ( y 1 , y 2 ) , x 2 = y 2 + h 2 ( y 1 , y 2 ) , x i = h i ( y 1 , y 2 ) , i = 3 , 4 , . . . , n. (45) 

Let us make the following near-identity transformation: 

x 1 = y 1 + h 1 ( y 1 , y 2 ) , x 2 = y 2 + h 2 ( y 1 , y 2 ) , x i = y i , i = 3 , 4 , . . . , n. (46) 

Then, 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

˙ x 1 
˙ x 2 
·
·
·
˙ x n 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 + 

∂ h 1 

∂ y 1 

∂ h 1 

∂ y 2 
∂ h 2 

∂ y 1 
1 + 

∂ h 2 

∂ y 2 
1 

·
·

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

˙ y 1 
˙ y 2 
·
·
·
˙ y n 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

˙ y 1 
˙ y 2 
·
·
·
˙ y n 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 + 

∂ h 1 

∂ y 1 

∂ h 1 

∂ y 2 
∂ h 2 

∂ y 1 
1 + 

∂ h 2 

∂ y 2 

1 

·
·

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

−1 ⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

˙ x 1 
˙ x 2 
·
·
·
˙ x n 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 
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= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 + 

∂ h 1 

∂ y 1 

∂ h 1 

∂ y 2 

∂ h 2 

∂ y 1 
1 + 

∂ h 2 

∂ y 2 

1 

·
·

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

−1 ⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

x 2 + f 1 ( x 1 , x 2 , . . . , x n ) 
−x 1 + f 2 ( x 1 , x 2 , . . . , x n ) 

·
·
·

−ω n −1 x n −1 − αn −1 x n + f n ( x 1 , x 2 , . . . , x n ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. (47)

We can obtain the system (48) which has the same stable properties as (27) at the origin by substituting (46) into (47) , as

follows, 

˙ y 1 = y 2 + e 1 ( y 1 , y 2 , . . . , y n ) , 

˙ y 2 = −y 1 + e 2 ( y 1 , y 2 , . . . , y n ) , 

˙ y i = e i ( y 1 , y 2 , . . . , y n ) , i = 3 , 4 , . . . , n. (48)

We get y i = h i ( y 1 , y 2 ) ( i = 3 , 4 , . . . , n ) from (45) and (46) . According to center manifold theory, we can prove that y i =
h i ( y 1 , y 2 ) , i = 3 , 4 , . . . , n is the center manifold of the n-dimensional system (48) . 

Substituting y i = h i ( y 1 , y 2 ) into the first two equations of (48) , we can get the reduced system , 

˙ y 1 = y 2 + a 13 ( y 1 
2 + y 2 

2 ) y 1 + · · · + a 1(2 n +1) ( y 1 
2 + y 2 

2 ) n y 1 + · · · + a 23 ( y 1 
2 + y 2 

2 ) y 2 + · · ·
+ a 2(2 n +1) ( y 1 

2 + y 2 
2 ) n y 2 + · · ·

˙ y 2 = −y 1 + a 13 ( y 1 
2 + y 2 

2 ) y 2 + · · · + a 1(2 n +1) ( y 1 
2 + y 2 

2 ) n y 2 + · · · − a 23 ( y 1 
2 + y 2 

2 ) y 1 − · · ·
− a 2(2 n +1) ( y 1 

2 + y 2 
2 ) n y 1 − · · ·. (49)

And the reduced system is obtained in [11–13] too. The Eqs. (49) given in polar co-ordinates can be written as (43) . Thus

the system (48) and (49) (43) have the same stability properties at the origin. And the system (48) and (27) have the same

stability properties at the origin, so the system (27) and (43) have the same stability properties at the origin. 

To give the following theorem for determining the stability of n-dimensional system conveniently, f k in (27) is written

as 

f 1 = s 11 x 1 
2 + s 12 x 2 

2 + s 13 x 1 x 2 + s 14 x 1 x 3 + s 15 x 2 x 3 + s 16 x 1 
3 + f 11 , 

f 2 = s 21 x 1 
2 + s 22 x 2 

2 + s 23 x 1 x 2 + s 24 x 1 x 3 + s 25 x 2 x 3 + s 26 x 2 
3 + f 21 , 

f k = s k 1 x 1 
2 + s k 2 x 2 

2 + s k 3 x 1 x 2 + f k 1 , k = 3 , 4 , . . . , n, (50)

where f 11 does not contain terms of x 1 
2 , x 2 

2 , x 1 x 2 , x 1 x 3 , x 2 x 3 , x 1 
3 , f 21 does not contain terms of x 1 

2 , x 2 
2 , x 1 x 2 , x 1 x 3 , x 2 x 3 ,

x 2 
3 , f k 1 does not contain terms of x 1 

2 , x 2 
2 , x 1 x 2 . And we assume x i 2 = B i 0 r 

2 + B i 1 r 
2 cos 2 θ + B i 2 r 

2 sin 2 θ . �

Theorem 2. For the system (27) , if �< 0, then the system will be unstable at the origin; if �> 0, then the system will be

asymptotically stable at the origin, where 

� = 

n ∑ 

i =1 

(
1 

2 

ξi 2 B i 2 − ξi 1 

(
B i 0 + 

1 

2 

B i 1 

))
+ 

n ∑ 

j=1 

(
1 

2 

τ j1 B j2 − τ j2 

(
B j0 −

1 

2 

B j1 

))
+ 

1 

2 

( B 22 ξ22 + B 12 τ11 ) −
(

B 10 + 

1 

2 

B 11 

)
ξ11 

−
(

B 20 − 1 

2 

B 21 

)
τ22 − 3 

4 

( s 16 + s 26 ) , 

ξ i 1 and ξ i 2 are the coefficients of x 1 x i and x 2 x i in f 1 respectively; τ j 1 and τ j 2 are the coefficients of x 1 x j and x 2 x j in f 2 respectively;

B , B , B are defined by x = B r 2 + B r 2 cos 2 θ + B r 2 sin 2 θ, in which 
i 0 i 1 i 2 i 2 i 0 i 1 i 2 
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B 10 = 

s 21 + s 22 

2 

, B 11 = 

s 22 + 2 s 13 − s 21 

6 

, B 12 = 

s 23 + 2 s 11 − 2 s 12 

6 

, 

B 20 = − s 11 + s 12 

2 

, B 21 = 

2 s 23 + s 11 − s 12 

6 

, B 22 = 

2 s 21 − 2 s 22 − s 13 

6 

, 

B a 0 = 

1 

α1 

B a +1 , 0 + 

s a 1 + s a 2 
2 α1 

, B a 1 = 

α1 B a +1 , 1 − 2 B a +1 , 2 

α1 
2 + 4 

+ 

α1 s a 1 − α1 s a 2 + 2 s a 3 
2( α1 

2 + 4) 
, 

B a 2 = 

2 B a +1 , 1 + α1 B a +1 , 2 

α1 
2 + 4 

+ 

2 s a 1 − 2 s a 2 − α1 s a 3 
2( α1 

2 + 4) 
, a = 3 , 4 , . . . , k 1 + 2 , 

B b0 = 

s b1 + s b2 

2 α1 

, B b1 = 

α1 s b1 − α1 s b2 + 2 s b3 

2( α1 
2 + 4) 

, B b2 = 

2 s b1 − 2 s b2 − α3 s b3 

2( α1 
2 + 4) 

, b = k 1 + 3 , . . . , k 2 + 2 , 

B p0 = 

s p1 + s p2 

2 αp 
, B p1 = 

αp s p1 − αp s p2 + 2 s p3 

2( αp 
2 + 4) 

, B p2 = 

2 s p1 − 2 s p2 − α3 s p3 

2( αp 
2 + 4) 

, p = k 2 + 3 , . . . , k 3 , 

B c0 = 

αB c+2 , 0 + ω B c+3 , 0 

ω 

2 + α2 
+ 

α( s c1 + s c2 ) + ω( s c+1 , 1 + s c+1 , 2 ) 

2( ω 

2 + α2 ) 
, 

B c1 = 

−4 αv c2 + ( α2 + ω 

2 − 4) v c1 

16 α2 + ( α2 + ω 

2 − 4) 
2 

, B c2 = 

4 αv c1 + ( α2 + ω 

2 − 4) v c2 

16 α2 + ( α2 + ω 

2 − 4) 
2 

, 

v c1 = 2 B c+2 , 2 + ω B c+3 , 1 + αB c+2 , 1 − s c3 + 

α( s c1 − s c2 ) + ω( s c+1 , 1 − s c+1 , 2 ) 

2 

, 

v c2 = −2 B c+2 , 1 + ω B c+3 , 2 + αB c+2 , 2 + s c2 − s c1 − 1 

2 

(αs c3 + ω s c+1 , 3 ) , 

c = k 3 + 1 , k 3 + 3 , . . . , k 4 − 1 , 

B d0 = 

ω( s d+1 , 1 + s d+1 , 2 ) + α( s d1 + s d2 ) 

2( ω 

2 + α2 ) 
, B d1 = 

−4 αu d2 + ( α2 + ω 

2 − 4) u d1 

16 α2 + ( α2 + ω 

2 − 4) 
2 

, B d2 = 

4 αu d1 + ( α2 + ω 

2 − 4) u d2 

16 α2 + ( α2 + ω 

2 − 4) 
2 

, 

u d1 = −s d3 + 

α( s d1 − s d2 ) + ω( s d+1 , 1 − s d+1 , 2 ) 

2 

, u d2 = s d2 − s d1 −
1 

2 

(αs d3 + ω s d+1 , 3 ) , 

B d+1 , 0 = 

−ω( s d1 + s d2 ) + α( s d+1 , 1 + s d+1 , 2 ) 

2( ω 

2 + α2 ) 
, B d+1 , 1 = 

1 

ω 

(
−2 B d1 + αB d2 + 

1 

2 

s d3 

)
, 

B d+1 , 2 = 

1 

ω 

(
2 B d2 + αB d1 −

s d1 − s d2 

2 

)
, 

d = k 4 + 1 , k 4 + 3 , . . . , k 5 − 1 , 

B q 0 = 

ω q ( s q +1 , 1 + s q +1 , 2 ) + αq ( s q 1 + s q 2 ) 

2( ω q 
2 + αq 

2 ) 
, B q 1 = 

−4 αq u q 2 + ( αq 
2 + ω q 

2 − 4) u q 1 

16 αq 
2 + ( αq 

2 + ω q 
2 − 4) 

2 
, B q 2 = 

4 αq u q 1 + ( αq 
2 + ω q 

2 − 4) u q 2 

16 αq 
2 + ( αq 

2 + ω q 
2 − 4) 

2 
,

u q 1 = −s q 3 + 

αq ( s q 1 − s q 2 ) + ω q ( s q +1 , 1 − s q +1 , 2 ) 

2 

, u q 2 = s q 2 − s q 1 − 1 

2 

( αq s q 3 + ω q s q +1 , 3 ) , 

B q +1 , 0 = 

−ω q ( s q 1 + s q 2 ) + αq ( s q +1 , 1 + s q +1 , 2 ) 

2( ω q 
2 + αq 

2 ) 
, B q +1 , 1 = 

1 

ω q 

(
−2 B q 1 + αq B q 2 + 

1 

2 

s q 3 

)
, 

B q +1 , 2 = 

1 

ω q 

(
2 B q 2 + αq B q 1 −

s q 1 − s q 2 

2 

)
, 

q = k 5 + 1 , k 5 + 3 , . . . , n − 1 . 

Proof. We need to judge the stability of (43) , firstly, we need to solve a 13 . Because a 13 r 
3 = D 2 r, then the next work is to

solve D 2 r . According to the method introduced above, in the ε3 order perturbation equations, to eliminate the possible

secular term in x 13 , we can solve D 2 r . From the first two equations in the ε3 order perturbation equations, D 0 x 13 + D 1 x 12 +
D 2 x 11 = x 23 + f 13 , D 0 x 23 + D 1 x 22 + D 2 x 21 = −x 13 + f 23 , we obtain that 

D 0 
2 x 13 + x 13 = −D 0 D 1 x 12 − D 0 D 2 x 11 − D 1 x 22 − D 2 x 21 + f 23 + D 0 f 13 . 

Substituting x 11 , x 21 into the above equation, we obtain 

D 0 
2 x 13 + x 13 = 2( D 2 r · sin θ + r D 2 ϕ · cos θ ) + f 23 + D 0 f 13 . (51) 

According to the definitions above, f i 3 ( i = 1 , 2 , . . . , n ) is in terms of x 11 
3 , x 21 

3 , x 11 x i 2 , x 21 x i 2 , i = 1 , 2 , . . . , n . Because D 2 r only

appears as the coefficient of sin θ , we only need to consider the coefficients of sin θ in f 23 + D 0 f 13 . Thus we only consider

the terms like x 11 x i 2 , x 21 x i 2 , x 11 
3 ( i = 1 , 2 , . . . , n ) in f 13 , and consider the terms like x 11 x i 2 , x 21 x i 2 , x 21 

3 ( i = 1 , 2 , . . . , n ) in f 23 .

According to the lemmas we have given, we assume x = B + B cos 2 θ + B sin 2 θ, and substituting the above equation
i 2 i 0 i 1 i 2 
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into (51) , we find 

D 

2 
0 x 13 + x 13 = 2( D 2 r · sin θ + r D 2 ϕ · cos θ ) + 

[ 

n ∑ 

i =1 

(
1 

2 

ξi 2 B i 2 − ξi 1 ( B i 0 + 

1 

2 

B i 1 ) 
)

+ 

n ∑ 

j=1 

(
1 

2 

τ j1 B j2 − τ j2 

(
B j0 −

1 

2 

B j1 

))

+ 

1 

2 

( B 22 ξ22 + B 12 τ11 ) −
(

B 10 + 

1 

2 

B 11 

)
ξ11 −

(
B 20 − 1 

2 

B 21 

)
τ22 − 3 

4 

( s 16 + s 26 ) 

] 

r 3 sin θ + g, (52)

where g does not contain the terms like sin θ . 

To eliminate the possible secular term in x 13 , in the right of (52) , it is required that the coefficients of sin θ , cos θ equal

0, which in turn yields 

D 2 r = −1 

2 

r 3 

[ 

n ∑ 

i =1 

(
1 

2 

ξi 2 B i 2 − ξi 1 

(
B i 0 + 

1 

2 

B i 1 

))
+ 

n ∑ 

j=1 

(
1 

2 

τ j1 B j2 − τ j2 

(
B j0 −

1 

2 

B j1 

))
+ 

1 

2 

( B 22 ξ22 + B 12 τ11 ) 

−
(

B 10 + 

1 

2 

B 11 

)
ξ11 −

(
B 20 − 1 

2 

B 21 

)
τ22 − 3 

4 

( s 16 + s 26 ) 
] 
. (53)

Thus the next task is to get B i 0 , B i 1 , B i 2 , and solve x i 2 in the ε2 order perturbation Eq. (29) . In the first and second equations,

according to the method for studying 3-dimensional system, by using the method of harmonic balance, we get B 10 , B 11 , B 12 ,

B 20 , B 21 , B 22 , x 12 , x 22 . In the rest of the Eq. (29) , B j0 , B j1 , B j2 ( j = 3 , 4 , . . . , n ) are obtained. Finally, we find that a 13 = − 1 
2 �. 

In the system (43) , if a 13 > 0, ( �< 0), then the system is unstable; if a 13 < 0, ( �> 0), then the system is asymptoti-

cally stable. And because the system (43) and (27) have the same stability properties at the origin, thus the Theorem 2 is

obtained. �

4. Examples 

In this section we shall present several examples and apply the theorems above in these examples. The first example,

which is 3-dimensional system, is described by the following differential equations: 

˙ x 1 = x 2 + x 1 
2 − x 1 x 3 + x 1 

3 + 2 x 1 
2 x 2 + 3 x 2 

4 , 

˙ x 2 = −x 1 + x 2 
2 + x 1 x 3 + x 2 

3 + x 1 x 2 
2 + 2 x 3 

4 , 

˙ x 3 = −2 x 3 + x 1 
2 + x 2 

2 + x 1 
4 . (54)

(It should be noted that the coefficients of vector field given in (54) are not necessary integers.) It is seen that the origin x =
0 is an equilibrium; and the linearized system of (54) has eigenvalues ± i and −2 at the origin. According to the Theorem 1 ,

we have 

p 1 = 1 , p 2 = 0 , p 3 = 0 , p 4 = −1 , p 5 = 0 , p 6 = 1 , q 1 = 0 , q 2 = 1 , q 3 = 0 , 

q 4 = 1 , q 5 = 0 , q 6 = 1 , α3 = 2 , r 1 = 1 , r 2 = 1 , r 3 = 0 , 

then we can obtain the result : 

� = ( p 3 − 2 q 1 ) p 1 + ( p 3 + 2 q 2 ) p 2 − ( q 1 + q 2 ) q 3 − 3( p 6 + q 6 ) + 

( p 5 + q 4 )(2 r 1 − 2 r 2 − α3 r 3 ) 

α3 
2 + 4 

+ 

(−p 4 + q 5 )( α3 r 1 − α3 r 2 + 2 r 3 ) 

α3 
2 + 4 

− 2( p 4 + q 5 )( r 1 + r 2 ) 

α3 

= −4 < 0 , 

and the system (54) is not stable. 

The second example, which is 5-dimensional system and has been considered in [11–13] , is described by the following

differential equations: 

˙ x 1 = x 2 + x 1 
2 − x 1 x 3 + x 2 

3 , 

˙ x 2 = −x 1 + x 2 
2 + x 1 x 4 + x 1 

3 + x 2 
3 + x 2 

4 , 

˙ x 3 = −x 3 + x 1 
2 + x 3 

3 , 

˙ x 4 = −x 4 + x 5 + x 1 
2 + x 3 

2 + x 4 
5 , 

˙ x 5 = −x 4 − x 5 + x 2 
2 + x 4 

2 + x 5 
3 . (55)
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It is seen that the origin x = 0 is an equilibrium; and the linearized system of (54) has eigenvalues ± i , −1 and −1 ± i at the

origin. According to the Theorem 2 , we have 

s 11 = 1 , s 12 = 0 , s 13 = 0 , s 14 = −1 , s 15 = 0 , s 16 = 0 , s 21 = 0 , s 22 = 1 , s 23 = 0 , s 24 = 0 , 

s 25 = 0 , s 26 = 1 , s 31 = 1 , s 32 = 0 , s 33 = 0 , s 41 = 1 , s 42 = 0 , s 43 = 0 , s 51 = 0 , s 52 = 1 , s 53 = 0 , 

ξ12 = ξ22 = ξ32 = ξ42 = ξ52 = 0 , ξ11 = 1 , ξ21 = 0 , ξ31 = −1 , ξ41 = 0 , ξ51 = 0 , 

τ11 = τ21 = τ31 = τ51 = 0 , τ41 = 1 , τ12 = τ32 = τ42 = τ52 = 0 , τ22 = 1 , 

B 12 = 

1 

3 

, B 22 = −1 

3 

, B 32 = 

1 

5 

, B 42 = 

1 

10 

, B 52 = − 1 

10 

, B 11 = 

1 

6 

, B 21 = 

1 

6 

, 

B 31 = 

1 

10 

, B 41 = 

1 

5 

, B 51 = − 3 

10 

, B 10 = 

1 

2 

, B 20 = −1 

2 

, B 30 = 

1 

2 

, B 40 = 

1 

2 

, B 50 = 0 , 

then we can obtain the result: 

� = 

5 ∑ 

i =1 

(
1 

2 

ξi 2 B i 2 − ξi 1 

(
B i 0 + 

1 

2 

B i 1 

))
+ 

5 ∑ 

j=1 

(
1 

2 

τ j1 B j2 − τ j2 

(
B j0 −

1 

2 

B j1 

))
+ 

1 

2 

( B 22 ξ22 + B 12 τ11 ) −
(

B 10 + 

1 

2 

B 11 

)
ξ11 

−
(

B 20 − 1 

2 

B 21 

)
τ22 − 3 

4 

( s 16 + s 26 ) = − 3 

20 

< 0 , 

and the system (55) is not stable. 

Obviously, with the help of Maple, the method in this paper is more simple and practical than the traditional Lyapunov

method which needs a suitable Lyapunov function. 

5. Conclusions 

We first give a theorem to determine the stability of the 3-dimensional system, then we solve the center manifold and

normal form of n-dimensional system. At last, the discrimination method for the stability of n-dimensional system is given.

The Jacobian matrix of the system studied here has only a pair of pure imaginary eigenvalues, and the other eigenvalues are

hyperbolic, so this is Hopf bifurcation case. In the above theorem, we can determine the stability by simple calculation of a

discriminant, and this discriminant can be calculated by coefficients of the original system. In the study of 3-dimensional or

n-dimensional system above, we only consider the situation that a 13 in the simplest normal form does not equal 0, and if

a 13 = 0 , the calculation will be more complicated, so it needs further study. Further we can also consider the stability of the

system in which the eigenvalues of Jacobian matrix are in other cases, and give a corresponding discriminant for judging

the stability. 
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